Connect with us

SpaceX

SpaceX CEO Elon Musk proposes Starship, Starlink tech for Solar System tour

Starship ignites its Raptor engines during a close approach to Titan. (NASA/SpaceX/Teslarati)

Published

on

SpaceX CEO Elon Musk has proposed an unusual approach to conducting a robotic survey of the Solar System’s major outer planets, asteroids, and comets, requiring a stripped-down Starship with a minimalist payload of Starlink satellites modified for interplanetary cruises and high-resolution cameras.

To enable this arrangement, it sounds like an expendable variant of Starship would have to be designed and built, cutting as much extraneous mass as possible to put as much energy as physically possible into its payloads. Outer planets – those lying beyond the Solar System’s main asteroid belt – are a minimum of 400 million miles (~650 million km) from Earth and stretch out to bodies like 2014 MU69 (below) at 4+ billion miles (6.8+ billion km) beyond Earth’s orbit. To travel those truly absurd distances, the time-to-destination can often be measured in decades, a timeframe that is physically impossible to shrink without hugely powerful rockets like BFR. Even then, SpaceX would face major hurdles to pull off Musk’s impromptu mission design.

New Horizons, the tiny but amazing spacecraft responsible for the first-ever close-up photos of Pluto and (more recently) the bizarre MU69 comet/asteroid, is perhaps the best categorical example of what Musk is proposing. Weighing less than 480 kg (1060 lb) and powered by a radioisotope generator (RTG), the spacecraft was launched in January 2006 and – after a single gravity assist around Jupiter – flew by Pluto a bit less than ten years later in July 2015, traveling a blistering ~13.8 km/s (8.6 mi/s).

After traveling several billion miles over nearly a decade, New Horizons completed its main mission, returning spectacular views of the unexpectedly exotic Pluto. (NASA/JPL)

Coincidentally, at least the first prototypes of SpaceX’s Starlink satellite constellation weighed around 400 kg (880 lb) during their March 2018 launch, just shy of New Horizons’ own dry mass. Major differences abound, however. Most notably, Starlink satellites will be powered by solar arrays optimized for energy generation at Earth’s distance from the sun, compared to New Horizons’ RTG reactor. At distances beyond Saturn, reliance on solar power would be an extraordinary challenge for any spacecraft hoping to do more than simply survive. For example, due to certain unforgiving laws of physics, New Horizons would receive – quite literally – 0.06% the solar energy per unit of area at Pluto.

To produce the scant ~300 Watts New Horizon receives from its nuclear power source, a single Starlink satellite would need a minimum of 1400 m^2 (~15,000 ft^2) of high-efficiency solar panels to survive and power a minimal suite of instruments and communications hardware. Assuming an extraordinary 170 g/m^2 solar array as proposed by Alta Devices, a Starlink satellite would need solar cells weighing no less than 250 kg (550 lb) total to operate at Pluto, a mass that absolutely does not factor in the complex mechanisms necessary to deploy a third of an acre of solar panels from an area of just a few cubic meters.

Frankly put, solar-powered exploration beyond the orbit of Jupiter and perhaps Saturn becomes almost inconceivably difficult. Further, the above numbers don’t even take into account each Starlink spacecraft’s electric thrusters, which would need several times more solar panels or massive batteries (themselves needing heaters) to operate at an optimal power level for long, uninterrupted periods of time, a necessity for electric propulsion. Several billion miles closer to the sun, in the main asteroid belt or around the gas giants Jupiter and Saturn, solar power is still extremely challenging but not impossible. NASA’s Juno spacecraft, the first solar-powered vehicle to visit the outer planets, uses solar arrays with an area of 72 m^2 (800 ft^2) to produce less than 500 Watts of power around Jupiter, compared to the ~14 kW they could produce around Earth.

Juno’s solar arrays are an impressive ~28% efficient but still weigh 340 kg (750 lb) and produce less than 500 Watts of power around Jupiter. (NASA)

At the end of the day, SpaceX’s Starlink satellites and Starship-based boost stage would need to undergo radical (and thus expensive) redesigns to accomplish such an ambitious ‘tour’ of the Outer Solar System, quite possibly also requiring the development and integration of wholly new technologies and exploration strategies to get off the ground. While the challenges are immense, the fact that Mr. Musk is already expressing interest in supporting such an exploratory, science-focused mission inspires confidence in the many future benefits that could soon be derived from Starlink and Starship, if successfully developed. Assuming missions that remain within the Inner Solar System, an exploration architecture as described by Musk is already readily doable and wouldn’t need the major modifications and leaps necessary for Outer Solar System ventures. Possible destinations where it could be practical include the Moon, Mars, Venus, the main asteroid belt (i.e. Ceres, Vesta, etc.), and many others.

If SpaceX can find a way to get both Starlink and Starship off the ground and into operational configurations, the future of space exploration – both human and robotic – could be extraordinarily bright.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Continue Reading
Comments

News

SpaceX and Elon Musk explain potential reasons for Starship loss

Published

on

Credit: SpaceX

SpaceX and its CEO Elon Musk are starting to shed some light on the potential reasoning for the loss of Starship yesterday, which was lost after a successful launch and catch of the lower-stage booster.

Starship was lost during its ascension, and debris rained down over the Caribbean less than an hour after SpaceX lost all communication with the spacecraft.

A few hours after the launch was over, SpaceX started to shed some light after looking at preliminary data that the rocket left behind.

The company said that a fire developed in the aft section of Starship:

“Following stage separation, the Starship upper stage successfully lit all six Raptor engines and performed its ascent burn to space. Prior to the burn’s completion, telemetry was lost with the vehicle after approximately eight and a half minutes of flight. Initial data indicates a fire developed in the aft section of the ship, leading to a rapid unscheduled disassembly with debris falling into the Atlantic Ocean within the predefined hazard areas.”

Additionally, Musk said that there was some sort of oxygen or fuel leak in the cavity above the ship engine firewall.

The leak was evidently large enough to build more pressure than the vent was able to handle:

Some also seemed to recognize evidence of fires throughout the flight of Starship, which is obviously an anomaly:

There will be more information regarding the loss of Starship in the coming days and weeks, but Musk already believes that a bit of fire suppression and more volume in the cavity above the ship engine firewall could fix the issue.

“Nothing so far suggests pushing next launch past next month,” he said, so Flight 8 could happen sometime in February.

Need accessories for your Tesla? Check out the Teslarati Marketplace:

Please email me with questions and comments at joey@teslarati.com. I’d love to chat! You can also reach me on Twitter @KlenderJoey, or if you have news tips, you can email us at tips@teslarati.com.

Continue Reading

News

SpaceX completes second catch of lower stage, but loses Starship

Published

on

Credit: SpaceX

SpaceX completed its seventh launch of Starship on Thursday, accomplishing a clean liftoff and catch of the first-stage booster. However, the upper stage was lost after its ascent.

The launch took place just a few minutes after 5 p.m. on the East Coast, as the first attempts at getting Starship in the air for the seventh time were delayed by weather both last week and this week.

Conditions were favorable on Thursday as SpaceX looked to follow up a successful campaign by Blue Origin, Jeff Bezos’s company, earlier today.

SpaceX went into the seventh Starship launch with plans for a catch attempt of the first-stage booster, something it attempted and completed during the fifth test launch last year. It decided to skip a catch attempt with the sixth test flight as conditions were not aligned.

For now, SpaceX is extremely selective as to when it attempts catches.

However, it was successful during this attempt, its second completed catch:

This flight differed from previous launches as SpaceX rolled out several improvements to the rocket and the processes as it featured plans to do a Starlink deployment simulation and had various adjustments to flap placement and avionics.

These plans were disrupted by the fact that SpaceX lost all communications with Starship about ten minutes into the flight, which the aerospace company confirmed was a result of losing the spacecraft sometime during its ascent.

Although the catch was successful, the loss of the actual rocket seemed to be a huge damper on the entire event. SpaceX confirmed several minutes after the loss of communications that the rocket was destroyed and was lost.

It was its first failure since the second Starship launch in November 2023. SpaceX had no answers for why the rocket was destroyed and lost.

We will keep you updated in the coming days.

Need accessories for your Tesla? Check out the Teslarati Marketplace:

Please email me with questions and comments at joey@teslarati.com. I’d love to chat! You can also reach me on Twitter @KlenderJoey, or if you have news tips, you can email us at tips@teslarati.com.

Continue Reading

News

SpaceX confirms next Starship launch target – Here’s when it will take off

Published

on

spacex starship upper stage catch
Credit: Elon Musk | X

SpaceX has confirmed a new target date for the seventh Starship test launch after weather in Texas delayed the first scheduled date for “three or four days.”

The company is now targeting the launch for Monday, January 13, at 4 p.m. CST or 5 p.m. EST. The launch date is not set in stone as any variety of delays could impact this, but SpaceX hopes to finally take off after a delay that pushed it back from January 10.

What’s new with this Starship launch

With this being the seventh test launch of Starship, there are several things that the company will change and hope to accomplish. All of these launches are done in preparation for eventually taking flight to Mars, something that will happen next year, according to CEO Elon Musk.

First, SpaceX is rolling out a next-generation ship with “significant upgrades.” Forward flaps have been made smaller and are repositioned away from the heat shield, which will “reduce their exposure to reentry heating.”

SpaceX eyes 25 annual Starship launches starting next year

There is also a 25 percent increase in propellant volume, a new fuel feedline system for the Raptor vacuum engines, and a better-than-ever propulsion avionics module that will control the valves and reading sensors.

Avionics, as a whole, underwent a redesign and now have more capability and redundancy for missions as they become more complex.

Starlink test

SpaceX is also planning to deploy 10 Starlink simulators that are similar in size and weight to the next-generation Starlink satellites:

“While in space, Starship will deploy 10 Starlink simulators, similar in size and weight to next-generation Starlink satellites as the first exercise of a satellite deploy mission. The Starlink simulators will be on the same suborbital trajectory as Starship, with splashdown targeted in the Indian Ocean. A relight of a single Raptor engine while in space is also planned.”

Ship return and catch

There will be several experiments that have to do with returning Starship and various catch scenarios and sequences. One of which will see “a significant number of tiles be removed to stress-test vulnerable areas across the vehicle.”

The ship’s reentry profile was also intentionally designed to test the structural limits of the flaps while at the point of maximum dynamic pressure during reentry.

Currently, SpaceX did not detail whether it would attempt another catch during this test launch. These are usually game-time decisions.

Need accessories for your Tesla? Check out the Teslarati Marketplace:

Please email me with questions and comments at joey@teslarati.com. I’d love to chat! You can also reach me on Twitter @KlenderJoey, or if you have news tips, you can email us at tips@teslarati.com.

Continue Reading