Connect with us

SpaceX

SpaceX’s first Block 5 Falcon Heavy days away from critical static fire test

(SpaceX)

Published

on

The first commercial launch of SpaceX’s Falcon Heavy rocket – this time in a Block 5 configuration – is as few as ten days away from a targeted window beginning at 6:36 pm EST (22:36 UTC), April 7th. That target hinges on whether Falcon Heavy is ready and able to roll out to Pad 39A and successfully conduct its first integrated static fire, currently scheduled on April 1st.

The payload for this mission – communications satellite Arabsat 6A – had its original Lockheed Martin manufacturing and SpaceX launch contracts signed back in the first half of 2015, while the 6000 kg (13,200 lb) spacecraft was effectively completed once it was shipped from California to Florida at the start of 2019. After approximately 12 months of delays from an original launch target shortly after Falcon Heavy’s 2018 debut, Arabsat 6A’s four-year journey will hopefully reach completion in a geostationary transfer orbit. At the same time, the US Air Force says that it will be watching this launch – and the one meant to follow soon after – as a critical test along the path to fully certifying the powerful rocket for military launches.

As a pathfinder for an unproven rocket, SpaceX’s first Falcon Heavy launch suffered a number of likely minor to moderate anomalies as company engineers and technicians learned for the first time how the rocket actually behaves in the real world, under real-world conditions and operations. Case in point, the first integrated Falcon Heavy was taken through its first wet-dress rehearsal – in which the vehicle is filled with a flight load of fuel and oxidizer – on January 11th. An anomaly required additional work and took nearly two weeks to resolve, culminating in the rocket’s first (and successful) static fire on January 24th. An additional two weeks after that, SpaceX went ahead with the first attempted launch of Falcon Heavy with great success, pushing the T-0 back several hours due to weather but ultimately completed an almost flawless debut, aside from an anomaly that caused the center core to impact the ocean surface at high speeds.

Despite the invaluable experience gained by those orchestrating the launch and those who built the vehicle, Falcon Heavy’s second launch may result in similar teething pains, particularly due to the fact that the rocket’s complete upgrade to Block 5 hardware likely necessitated significant design changes across the board. In other words, the rocket SpaceX aims to launch in early April may be quite a bit different from the vehicle that launched 14 months prior, creating much of the same uncertainty inherent in the first launch(es) of any new rocket. Still, many of the complex boosters’ connection and separation mechanisms that were flight-tested for the first time that February were likely more or less unchanged in the move from Block 2/3 to Block 5 hardware.

Falcon Heavy prior to its first static fire test, January 2018. (SpaceX)

“Again, I don’t want to tempt fate. But this is a much stronger octaweb structure. It’s made of a much higher strength of bolted aluminum. A 7000 series instead of a 2000 series. So the strength of the octaweb is dramatically greater. It also has quite a bit of thermal protection in case there’s say, an engine fire, or something like that. Such that it does not melt the octaweb.” – SpaceX CEO Elon Musk, May 2018

“Biggest process change [for Block 5] was eliminating Tig welding of the thrust structure or “Octaweb” and the move to a bolted design but this made it much easier and faster to produce overall as well.” – SpaceX VP of Production Andy Lambert, April 2018

A step further, SpaceX CEO Elon Musk has indicated that one major section of Block 5 upgrades – moving from a welded to a bolted thrust structure (i.e. octaweb) – was expected to be a boon for Falcon Heavy, while also making octawebs far easier to manufacture, assemble, and even disassemble. According to Musk, new bolted octawebs are also “dramatically” stronger, a boon for Falcon Heavy boosters – particularly the center core – that need to survive forces multiple times stronger than those subjected upon Falcon 9 first stages.

Falcon 9’s engine section is an extremely strong structure known as an octaweb. (SpaceX)

Meanwhile, according to comments made by Air Force officials to Spaceflight Now, the USAF is looking at SpaceX’s Arabsat 6A and subsequent STP-2 Falcon Heavy launches as critical steps along the way to fully certifying the rocket for valuable military payloads. Currently, the only option available for military and NRO payloads past a certain weight or in need of exceptionally high-energy orbits is ULA’s Delta IV Heavy rocket, an extremely expensive ($300M+ per launch) rocket with a bad track record of schedule reliability.

An Air Force spokesperson this week confirmed the agreement to use previously-flown side boosters for the STP-2 mission. The center core will be new for the Arabsat 6A and STP-2 launches.

“This provides an early opportunity for the Air Force to understand the process for using previously-flown hardware with the goal to open future EELV missions to reusable launch vehicles,” the spokesperson said in response to an inquiry from Spaceflight Now.

Given that STP-2 will need to reuse both of the Arabsat 6A Falcon Heavy’s side boosters, the USAF official also specifically noted that the military branch would be examining SpaceX’s refurbishment processes and the performance of the flight-proven stages with the intention of ultimately allowing reused rockets to launch military satellites. As such, the successful launch, landing, refurbishment, and re-launch of both Falcon Heavy side boosters (B1052 & B1053) will be doubly critical for SpaceX.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Continue Reading
Comments

News

SpaceX and Elon Musk explain potential reasons for Starship loss

Published

on

Credit: SpaceX

SpaceX and its CEO Elon Musk are starting to shed some light on the potential reasoning for the loss of Starship yesterday, which was lost after a successful launch and catch of the lower-stage booster.

Starship was lost during its ascension, and debris rained down over the Caribbean less than an hour after SpaceX lost all communication with the spacecraft.

A few hours after the launch was over, SpaceX started to shed some light after looking at preliminary data that the rocket left behind.

The company said that a fire developed in the aft section of Starship:

“Following stage separation, the Starship upper stage successfully lit all six Raptor engines and performed its ascent burn to space. Prior to the burn’s completion, telemetry was lost with the vehicle after approximately eight and a half minutes of flight. Initial data indicates a fire developed in the aft section of the ship, leading to a rapid unscheduled disassembly with debris falling into the Atlantic Ocean within the predefined hazard areas.”

Additionally, Musk said that there was some sort of oxygen or fuel leak in the cavity above the ship engine firewall.

The leak was evidently large enough to build more pressure than the vent was able to handle:

Some also seemed to recognize evidence of fires throughout the flight of Starship, which is obviously an anomaly:

There will be more information regarding the loss of Starship in the coming days and weeks, but Musk already believes that a bit of fire suppression and more volume in the cavity above the ship engine firewall could fix the issue.

“Nothing so far suggests pushing next launch past next month,” he said, so Flight 8 could happen sometime in February.

Need accessories for your Tesla? Check out the Teslarati Marketplace:

Please email me with questions and comments at joey@teslarati.com. I’d love to chat! You can also reach me on Twitter @KlenderJoey, or if you have news tips, you can email us at tips@teslarati.com.

Continue Reading

News

SpaceX completes second catch of lower stage, but loses Starship

Published

on

Credit: SpaceX

SpaceX completed its seventh launch of Starship on Thursday, accomplishing a clean liftoff and catch of the first-stage booster. However, the upper stage was lost after its ascent.

The launch took place just a few minutes after 5 p.m. on the East Coast, as the first attempts at getting Starship in the air for the seventh time were delayed by weather both last week and this week.

Conditions were favorable on Thursday as SpaceX looked to follow up a successful campaign by Blue Origin, Jeff Bezos’s company, earlier today.

SpaceX went into the seventh Starship launch with plans for a catch attempt of the first-stage booster, something it attempted and completed during the fifth test launch last year. It decided to skip a catch attempt with the sixth test flight as conditions were not aligned.

For now, SpaceX is extremely selective as to when it attempts catches.

However, it was successful during this attempt, its second completed catch:

This flight differed from previous launches as SpaceX rolled out several improvements to the rocket and the processes as it featured plans to do a Starlink deployment simulation and had various adjustments to flap placement and avionics.

These plans were disrupted by the fact that SpaceX lost all communications with Starship about ten minutes into the flight, which the aerospace company confirmed was a result of losing the spacecraft sometime during its ascent.

Although the catch was successful, the loss of the actual rocket seemed to be a huge damper on the entire event. SpaceX confirmed several minutes after the loss of communications that the rocket was destroyed and was lost.

It was its first failure since the second Starship launch in November 2023. SpaceX had no answers for why the rocket was destroyed and lost.

We will keep you updated in the coming days.

Need accessories for your Tesla? Check out the Teslarati Marketplace:

Please email me with questions and comments at joey@teslarati.com. I’d love to chat! You can also reach me on Twitter @KlenderJoey, or if you have news tips, you can email us at tips@teslarati.com.

Continue Reading

News

SpaceX confirms next Starship launch target – Here’s when it will take off

Published

on

spacex starship upper stage catch
Credit: Elon Musk | X

SpaceX has confirmed a new target date for the seventh Starship test launch after weather in Texas delayed the first scheduled date for “three or four days.”

The company is now targeting the launch for Monday, January 13, at 4 p.m. CST or 5 p.m. EST. The launch date is not set in stone as any variety of delays could impact this, but SpaceX hopes to finally take off after a delay that pushed it back from January 10.

What’s new with this Starship launch

With this being the seventh test launch of Starship, there are several things that the company will change and hope to accomplish. All of these launches are done in preparation for eventually taking flight to Mars, something that will happen next year, according to CEO Elon Musk.

First, SpaceX is rolling out a next-generation ship with “significant upgrades.” Forward flaps have been made smaller and are repositioned away from the heat shield, which will “reduce their exposure to reentry heating.”

SpaceX eyes 25 annual Starship launches starting next year

There is also a 25 percent increase in propellant volume, a new fuel feedline system for the Raptor vacuum engines, and a better-than-ever propulsion avionics module that will control the valves and reading sensors.

Avionics, as a whole, underwent a redesign and now have more capability and redundancy for missions as they become more complex.

Starlink test

SpaceX is also planning to deploy 10 Starlink simulators that are similar in size and weight to the next-generation Starlink satellites:

“While in space, Starship will deploy 10 Starlink simulators, similar in size and weight to next-generation Starlink satellites as the first exercise of a satellite deploy mission. The Starlink simulators will be on the same suborbital trajectory as Starship, with splashdown targeted in the Indian Ocean. A relight of a single Raptor engine while in space is also planned.”

Ship return and catch

There will be several experiments that have to do with returning Starship and various catch scenarios and sequences. One of which will see “a significant number of tiles be removed to stress-test vulnerable areas across the vehicle.”

The ship’s reentry profile was also intentionally designed to test the structural limits of the flaps while at the point of maximum dynamic pressure during reentry.

Currently, SpaceX did not detail whether it would attempt another catch during this test launch. These are usually game-time decisions.

Need accessories for your Tesla? Check out the Teslarati Marketplace:

Please email me with questions and comments at joey@teslarati.com. I’d love to chat! You can also reach me on Twitter @KlenderJoey, or if you have news tips, you can email us at tips@teslarati.com.

Continue Reading