Connect with us

SpaceX

SpaceX’s Falcon Heavy to ignite all 27 Merlin engines in early morning test

Falcon Heavy ignites all 27 Merlin 1D engines for the first time prior to its inaugural launch, January 2018. (SpaceX)

Published

on

SpaceX is set to take another stab at the first integrated static fire test of Falcon Heavy Block 5 rocket, a milestone that will open the doors for its commercial launch debut just a handful of days later.

The window for the second Falcon Heavy’s static fire test will open at 10am EDT on Friday, April 5th and lasts until 7pm EDT (14:00-23:00 UTC), after which SpaceX engineers will likely spend a minimum of 24-48 hours analyzing the data produced and verifying the rocket’s health. Soon after, the rocket will be brought horizontal and rolled back into Pad 39A’s main hangar, where the payload fairing – containing the Arabsat 6A communications satellite – will be installed atop Falcon Heavy’s second stage before the rocket rolls back out to the pad for launch.

If all goes well during these relatively routine procedures, SpaceX can be expected to announce a date for Falcon Heavy’s second-ever launch, likely no sooner than 4-5 days after the static fire is completed. In other words, a flawless performance tomorrow could permit a launch date as early as April 9-10. Launching fewer than four days after completing static fire testing is rare even for Falcon 9, which has the luxury of far less complexity (and data produced) relative to Falcon Heavy, which has only flown once and is will attempt its second launch in a significantly different configuration.

Three months after Falcon Heavy’s February 2018 debut, SpaceX debuted Falcon 9 in its upgraded Block 5 configuration, featuring widespread changes to avionics, software, structures, thermal protection, and even uprated thrust for its Merlin engines. Falcon Heavy Flight 1 was comprised of Block 2 and Block 3 variants of the Falcon 9’s umbrella V1.2 Full Thrust configuration, which debuted in December 2015. Both side boosters – Block 2s – were flight-proven and had previously launched in 2016, while the rocket’s heavily modified center core was effectively a new version of Falcon 9 based on Block 3 hardware.

Falcon 9 B1046 returned to Port of Los Angeles on December 5 after the rocket's historic third launch and landing. (Pauline Acalin)
(Top) Falcon 9 B1046 – the first Block 5 booster completed – launched for the first time in May 2018. (Bottom) Almost exactly seven months later, Falcon 8 B1046 flew for the third time in a historic first for SpaceX rockets. (SpaceX/Pauline Acalin)

One of the biggest goals of Block 5 / Version 6 is ease of reusability. In principle we could re-fly Block 4 probably upwards of ten times, but with a fair amount of work between each flight. The key to Block 5 is that it’s designed to do ten or more flights with no refurbishment between each flight. Or at least no scheduled refurbishment between each flights. The only thing that needs to change is you reload propellant and fly again.

And we have
upgrades to all the avionics as well. So we have an upgraded flight computer, engine controllers, a … more advanced inertial measurement system. [Block 5 avionics are] lighter, more advanced, and also more fault-tolerant. So it can withstand a much greater array of faults than the old avionics system. [They’re] better in every way.

Block 5 has improved payload to orbit. Improved redundancy. Improved reliability. It’s really better in every way than Block 4. I’m really proud of the SpaceX team for the design.


– SpaceX CEO Elon Musk, May 2018

A different different rocket

Given just how extensive the changes made with Block 5 are, Falcon Heavy Flight 2 is drastically different than its sole predecessor, emphasized by the 13+ months SpaceX has taken to go from Flight 1 to Flight 2. Had SpaceX been able to successfully recover Falcon Heavy’s first center core (B1033) after launch, its quite likely that the company would have attempted to refly the rocket’s three landed boosters a bit sooner than April 2019, but the booster’s failed landing threw a bit of a wrench in the production plan.

After intentionally expending almost a dozen recoverable Block 3 and 4 Falcon 9 boosters in 2017 and 2018, SpaceX’s fleet of flightworthy cores had been reduced to a tiny handful. Interrupting Falcon 9 Block 5’s production ramp would have likely become a bottleneck for 2018’s launch cadence, and may well have contributed to SpaceX falling short from its planned 30 and then 24 launches last year with a still-impressive 21. Building an entirely new Falcon Heavy center core was simply not a priority as SpaceX required all production hands on deck to build enough Block 5 boosters to avoid major launch delays.

An overview of SpaceX’s Hawthorne factory floor in early 2018. (SpaceX)

As a result, SpaceX delayed the production of the first Falcon Heavy Block 5 center core by ~6 months and ~8 boosters, shipping the rocket – presumed to be B1055 – to McGregor, Texas for static fire acceptance testing in Q4 2018. The center core arrived in Florida in mid-February 2019, following both side cores and a payload fairing.

Ultimately, SpaceX is likely to conduct Falcon Heavy’s first commercial launch with about as much caution as could be observed during the unique launches of SSO-A (the first triple-reflight of a Falcon 9), Crew Dragon DM-1 (stringent NASA oversight), and GPS III SV01 (stringent USAF oversight), as well as Falcon Heavy’s original launch debut. All four missions took anywhere from one to three weeks to go from a successful static fire to launch. Falcon Heavy Flight 2 will likely be similar, although a much faster turnaround is undeniably within the realm of possibility. For Falcon 9 Block 5, SpaceX’s current record stands at three days, achieved twice in ten Block 5 launches.

Stay tuned for an official SpaceX confirmation of Falcon Heavy’s second integrated static fire, as well as new launch date.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Continue Reading
Comments

News

SpaceX and Elon Musk explain potential reasons for Starship loss

Published

on

Credit: SpaceX

SpaceX and its CEO Elon Musk are starting to shed some light on the potential reasoning for the loss of Starship yesterday, which was lost after a successful launch and catch of the lower-stage booster.

Starship was lost during its ascension, and debris rained down over the Caribbean less than an hour after SpaceX lost all communication with the spacecraft.

A few hours after the launch was over, SpaceX started to shed some light after looking at preliminary data that the rocket left behind.

The company said that a fire developed in the aft section of Starship:

“Following stage separation, the Starship upper stage successfully lit all six Raptor engines and performed its ascent burn to space. Prior to the burn’s completion, telemetry was lost with the vehicle after approximately eight and a half minutes of flight. Initial data indicates a fire developed in the aft section of the ship, leading to a rapid unscheduled disassembly with debris falling into the Atlantic Ocean within the predefined hazard areas.”

Additionally, Musk said that there was some sort of oxygen or fuel leak in the cavity above the ship engine firewall.

The leak was evidently large enough to build more pressure than the vent was able to handle:

Some also seemed to recognize evidence of fires throughout the flight of Starship, which is obviously an anomaly:

There will be more information regarding the loss of Starship in the coming days and weeks, but Musk already believes that a bit of fire suppression and more volume in the cavity above the ship engine firewall could fix the issue.

“Nothing so far suggests pushing next launch past next month,” he said, so Flight 8 could happen sometime in February.

Need accessories for your Tesla? Check out the Teslarati Marketplace:

Please email me with questions and comments at joey@teslarati.com. I’d love to chat! You can also reach me on Twitter @KlenderJoey, or if you have news tips, you can email us at tips@teslarati.com.

Continue Reading

News

SpaceX completes second catch of lower stage, but loses Starship

Published

on

Credit: SpaceX

SpaceX completed its seventh launch of Starship on Thursday, accomplishing a clean liftoff and catch of the first-stage booster. However, the upper stage was lost after its ascent.

The launch took place just a few minutes after 5 p.m. on the East Coast, as the first attempts at getting Starship in the air for the seventh time were delayed by weather both last week and this week.

Conditions were favorable on Thursday as SpaceX looked to follow up a successful campaign by Blue Origin, Jeff Bezos’s company, earlier today.

SpaceX went into the seventh Starship launch with plans for a catch attempt of the first-stage booster, something it attempted and completed during the fifth test launch last year. It decided to skip a catch attempt with the sixth test flight as conditions were not aligned.

For now, SpaceX is extremely selective as to when it attempts catches.

However, it was successful during this attempt, its second completed catch:

This flight differed from previous launches as SpaceX rolled out several improvements to the rocket and the processes as it featured plans to do a Starlink deployment simulation and had various adjustments to flap placement and avionics.

These plans were disrupted by the fact that SpaceX lost all communications with Starship about ten minutes into the flight, which the aerospace company confirmed was a result of losing the spacecraft sometime during its ascent.

Although the catch was successful, the loss of the actual rocket seemed to be a huge damper on the entire event. SpaceX confirmed several minutes after the loss of communications that the rocket was destroyed and was lost.

It was its first failure since the second Starship launch in November 2023. SpaceX had no answers for why the rocket was destroyed and lost.

We will keep you updated in the coming days.

Need accessories for your Tesla? Check out the Teslarati Marketplace:

Please email me with questions and comments at joey@teslarati.com. I’d love to chat! You can also reach me on Twitter @KlenderJoey, or if you have news tips, you can email us at tips@teslarati.com.

Continue Reading

News

SpaceX confirms next Starship launch target – Here’s when it will take off

Published

on

spacex starship upper stage catch
Credit: Elon Musk | X

SpaceX has confirmed a new target date for the seventh Starship test launch after weather in Texas delayed the first scheduled date for “three or four days.”

The company is now targeting the launch for Monday, January 13, at 4 p.m. CST or 5 p.m. EST. The launch date is not set in stone as any variety of delays could impact this, but SpaceX hopes to finally take off after a delay that pushed it back from January 10.

What’s new with this Starship launch

With this being the seventh test launch of Starship, there are several things that the company will change and hope to accomplish. All of these launches are done in preparation for eventually taking flight to Mars, something that will happen next year, according to CEO Elon Musk.

First, SpaceX is rolling out a next-generation ship with “significant upgrades.” Forward flaps have been made smaller and are repositioned away from the heat shield, which will “reduce their exposure to reentry heating.”

SpaceX eyes 25 annual Starship launches starting next year

There is also a 25 percent increase in propellant volume, a new fuel feedline system for the Raptor vacuum engines, and a better-than-ever propulsion avionics module that will control the valves and reading sensors.

Avionics, as a whole, underwent a redesign and now have more capability and redundancy for missions as they become more complex.

Starlink test

SpaceX is also planning to deploy 10 Starlink simulators that are similar in size and weight to the next-generation Starlink satellites:

“While in space, Starship will deploy 10 Starlink simulators, similar in size and weight to next-generation Starlink satellites as the first exercise of a satellite deploy mission. The Starlink simulators will be on the same suborbital trajectory as Starship, with splashdown targeted in the Indian Ocean. A relight of a single Raptor engine while in space is also planned.”

Ship return and catch

There will be several experiments that have to do with returning Starship and various catch scenarios and sequences. One of which will see “a significant number of tiles be removed to stress-test vulnerable areas across the vehicle.”

The ship’s reentry profile was also intentionally designed to test the structural limits of the flaps while at the point of maximum dynamic pressure during reentry.

Currently, SpaceX did not detail whether it would attempt another catch during this test launch. These are usually game-time decisions.

Need accessories for your Tesla? Check out the Teslarati Marketplace:

Please email me with questions and comments at joey@teslarati.com. I’d love to chat! You can also reach me on Twitter @KlenderJoey, or if you have news tips, you can email us at tips@teslarati.com.

Continue Reading