Connect with us

News

SpaceX teases extreme Falcon 9 launch cadence goals in Starship planning doc

Falcon 9 rolls out to Pad 39A in February 2019 for Crew Dragon's orbital launch debut, known as Demo-1. (NASA - Joel Kowsky)

Published

on

Published as part of an August 2019 environmental assessment (EA) draft for Starship’s prospective Pad 39A launch facilities, SpaceX revealed plans for a truly mindboggling number of annual Falcon 9 and Falcon Heavy launches by 2024.

As environmental planning documents, the figures should be taken with a large grain of salt and be treated as near-absolute ceilings rather than practical goals. Nevertheless, SpaceX revealed plans for its two Florida launch sites (LC-40 and LC-39A) to ultimately support as many as 70 annual launches of Falcon 9 and Heavy by 2024, less than five years from now.

Simply put, even the most dogmatic fan would have to balk at least a little bit at the numbers SpaceX suggested in its Starship EA draft. More specifically, SpaceX apparently has plans to support as many as 20 annual Falcon 9/Heavy launches from Pad 39A and an incredible 50 annual Falcon 9 launches from LC-40 as early as 2024.

“SpaceX plans to increase the Falcon launch frequency to 20 launches per year from LC-39A and up to 50 launches per year from LC-40 by the year 2024. However, as Starship/Super Heavy launches gradually increase to 24 launches per year, the number of launches of the Falcon would decrease.

–SpaceX, Starship Environmental Assessment Draft, August 2019

SpaceX’s massive Launch Complex 39A is pictured here. (USAF – Hope Geiger, February 2019)
Falcon 9 B1047 lifts off from SpaceX’s LC-40 pad on August 6th, 2019. (SpaceX)

Two obvious options

Given just how significant of an increase a 70-launch annual cadence would be for SpaceX relative to their current record of 21 launches, it’s entirely possible that these numbers are really just a pipe dream included in a pending environmental assessment to hedge bets just in case a similar launch frequency is achieved over the next five years.

On the other hand, it’s possible that SpaceX – just now coming into the ability to reliably achieve a much higher cadence – has coincidentally become payload-constrained at almost the same time, meaning that the company’s customers’ payloads just aren’t ready for launch. This would explain, for example, why SpaceX has only launched 10 times this year when the company had already completed 15 launches by August 2018.

SpaceX completed its 10th launch of 2019 on August 6th, placing the AMOS-17 communications satellite into a healthy orbit. (SpaceX)

Additionally, it can be almost unequivocally assumed that all but 15-20 of those supposed 70 annual launches would come from SpaceX’s own internal demand for Starlink launch capacity. Assuming no improvements between now and 2024, 50 Falcon 9 launches could place as many as 3000 Starlink satellites in orbit in a single year, equivalent to more than 25% of the entire proposed ~11,800-satellite constellation.

Barring regulatory changes to US Federal Communications Commission (FCC) and International Telecommunication Union (ITU) requirements, SpaceX must launch at least half of all Starlink satellites (~5900) by November 2024 and finish launching the remaining ~5900 by November 2027. If SpaceX fails to reach those deployment milestones, the company runs the risk of losing Starlink’s domestic and international licenses to operate.

SpaceX successfully launched an unprecedented set of 60 prototype Starlink satellites (internally nicknamed “v0.9”) in May 2019. (SpaceX)

This would help to explain why SpaceX says that it’s planning to reach a maximum cadence of 70 annual launches “by 2024”, given that 2024 will be a pivotal year in the eyes of regulations currently in effect for Starlink.

Starship confusion

As noted in the quote above, SpaceX plans to eventually phase out Falcon 9 and Heavy launches as the company’s next-generation Starship and Super Heavy launch vehicle gradually comes online, proves itself reliable, and begins operational launch activities. According to SpaceX, given just how much mass Starship can nominally launch relative to both Falcon 9 and Heavy, far fewer launches will be needed to accomplish the tasks that would otherwise require several times more launches of SpaceX’s smaller vehicles.

SpaceX’s initial Environmental Assessment for Starship launches from Pad 39A caps the rocket’s maximum cadence at 24 annual launches. Oddly, this directly contradicts the goals set for Starship (formerly BFR) by CEO Elon Musk and SpaceX more generally. By building a launch vehicle that is fully and rapidly reusable, the goal has long been to deliver cheap, aircraft-like access to orbit at a completely unprecedented scale.

Starship was never meant to lower SpaceX’s annual launch cadence. (SpaceX)

This would technically mean that SpaceX could actually dramatically increase its launch cadence without increasing costs, allowing the company to perform currently nonsensical missions where Starship might launch payloads weighing just 5-10% of its total payload capacity. Airline operations routinely do things of a similar nature, sometimes flying just a fraction of their maximum passenger load to destinations for a variety of reasons.

Additionally, SpaceX has consistently indicated that Starship will rely heavily on orbital refueling to accomplish its ultimate deep space ambitions. Previous presentations from Elon Musk have shown that launches to the Mars or Moon with significant payload would require no fewer than five separate tanker launches and orbital refuelings, all of which would classify as one of the 24 annual launches SpaceX has described in its August 2019 EA draft. On their own, launching two Starships to Mars with 100 tons of payload each would require no fewer than 10-12 launches.

A 2017 overview of a Starship (then BFS) mission to Mars. (SpaceX)

Ultimately, it’s unwise to draw any substantial conclusions from an Environmental Assessment like the one the above information has been taken from. This 39A-specific EA also ignores the possibility of a similar launch facility being developed in Boca Chica, Texas, which SpaceX explicitly acknowledges.

This particular draft is also the first Starship-related EA ever filed by SpaceX, and the company may thus be treating it more as a bare minimum with the intention of eventually pursuing far more ambitious launch rates once Starship has been established.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Continue Reading
Comments

News

Armored Tesla Cybertruck “War Machine” debuts at Defense Expo 2025

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Published

on

Photo: Unplugged Performance

Temporibus autem quibusdam et aut officiis debitis aut rerum necessitatibus saepe eveniet ut et voluptates repudiandae sint et molestiae non recusandae. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

“Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat”

Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit aut fugit, sed quia consequuntur magni dolores eos qui ratione voluptatem sequi nesciunt.

Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus.

Nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium doloremque laudantium, totam rem aperiam, eaque ipsa quae ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt explicabo.

Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci velit, sed quia non numquam eius modi tempora incidunt ut labore et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, nisi ut aliquid ex ea commodi consequatur.

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga.

Quis autem vel eum iure reprehenderit qui in ea voluptate velit esse quam nihil molestiae consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla pariatur.

Continue Reading

News

Tesla Megapacks chosen for 548 MWh energy storage project in Japan

Tesla plans to supply over 100 Megapack units to support a large stationary storage project in Japan, making it one of the country’s largest energy storage facilities.

Published

on

Tesla-megapack-pilot-project-willowbrook-mall
Credit: Tesla

Tesla’s Megapack grid-scale batteries have been selected to back an energy storage project in Japan, coming as the latest of the company’s continued deployment of the hardware.

As detailed in a report from Nikkei this week, Tesla plans to supply 142 Megapack units to support a 548 MWh storage project in Japan, set to become one of the country’s largest energy storage facilities. The project is being overseen by financial firm Orix, and it will be located at a facility Maibara in central Japan’s Shiga prefecture, and it aims to come online in early 2027.

The deal is just the latest of several Megapack deployments over the past few years, as the company continues to ramp production of the units. Tesla currently produces the Megapack at a facility in Lathrop, California, though the company also recently completed construction on its second so-called “Megafactory” in Shanghai China and is expected to begin production in the coming weeks.

READ MORE ON TESLA MEGAPACKS: Tesla Megapacks help power battery supplier Panasonic’s Kyoto test site

Tesla’s production of the Megapack has been ramping up at the Lathrop facility since initially opening in 2022, and both this site and the Shanghai Megafactory are aiming to eventually reach a volume production of 10,000 Megapack units per year. The company surpassed its 10,000th Megapack unit produced at Lathrop in November.

During Tesla’s Q4 earnings call last week, CEO Elon Musk also said that the company is looking to construct a third Megafactory, though he did not disclose where.

Last year, Tesla Energy also had record deployments of its Megapack and Powerwall home batteries with a total of 31.4 GWh of energy products deployed for a 114-percent increase from 2023.

Other recently deployed or announced Megapack projects include a massive 600 MW/1,600 MWh facility in Melbourne, a 75 MW/300 MWh energy storage site in Belgium, and a 228 MW/912 MWh storage project in Chile, along with many others still.

What are your thoughts? Let me know at zach@teslarati.com, find me on X at @zacharyvisconti, or send us tips at tips@teslarati.com.

Tesla highlights the Megapack site replacing Hawaii’s last coal plant

Need accessories for your Tesla? Check out the Teslarati Marketplace:

Continue Reading

News

Elon Musk responds to Ontario canceling $100M Starlink deal amid tariff drama

Ontario Premier Doug Ford said, opens new tab on February 3 that he was “ripping up” his province’s CA$100 million agreement with Starlink in response to the U.S. imposing tariffs on Canadian goods.

Published

on

NORAD and USNORTHCOM Public Affairs, Public domain, via Wikimedia Commons

Elon Musk company SpaceX is set to lose a $100 million deal with the Canadian province of Ontario following a response to the Trump administration’s decision to apply 25 percent tariffs to the country.

Starlink, a satellite-based internet service launched by the Musk entity SpaceX, will lose a $100 million deal it had with Ontario, Premier Doug Ford announced today.

Ford said on X today that Ontario is banning American companies from provincial contracts:

“We’ll be ripping up the province’s contract with Starlink. Ontario won’t do business with people hellbent on destroying our economy. Canada didn’t start this fight with the U.S., but you better believe we’re ready to win it.”

It is a blow to the citizens of the province more than anything, as the Starlink internet constellation has provided people in rural areas across the globe stable and reliable access for several years.

Musk responded in simple terms, stating, “Oh well.”

It seems Musk is less than enthused about the fact that Starlink is being eliminated from the province, but it does not seem like all that big of a blow either.

As previously mentioned, this impacts citizens more than Starlink itself, which has established itself as a main player in reliable internet access. Starlink has signed several contracts with various airlines and maritime companies.

It is also expanding to new territories across the globe on an almost daily basis.

With Mexico already working to avoid the tariff situation with the United States, it will be interesting to see if Canada does the same.

The two have shared a pleasant relationship, but President Trump is putting his foot down in terms of what comes across the border, which could impact Americans in the short term.

Continue Reading