Connect with us

SpaceX

SpaceX’s Crew Dragon spaceship shown off in first high-res orbital portraits

SpaceX's Crew Dragon is seen here in spectacular detail shortly before completing a flawless inaugural rendezvous with the International Space Station. (Oleg Kononenko/Roscosmos)

Published

on

Taken by Russian cosmonaut Oleg Kononenko, the first high-resolution photos of SpaceX’s Crew Dragon spacecraft have begun to trickle in, offering the best views yet of the advanced human-rated spacecraft in its natural habit: Earth orbit.

Filling in for a distinct and uncharacteristic lack of official photos from NASA, the spacecraft’s inaugural spaceflight had thus far only been documented through NASA’s own live coverage of its International Space Station (ISS) rendezvous, limited to a relatively low-quality stream. With Oleg’s extremely high-resolution captures, we can begin to see SpaceX’s Crew Dragon with a level of detail previously only seen (if ever) on the ground.

In all fairness to NASA, the ISS is operating with just three crew members, only one of which – Anne McClain – is a NASA astronaut. Particularly the case for an operation as critical as Crew Dragon’s inaugural orbital docking attempt, the task of controlling space vehicle rendezvous typically requires the full attention of one or two onboard astronauts – in this case, NASA’s Anne McClain and Canadian Space Agency (CSA) astronaut David Saint-Jacques. Veteran Russian cosmonaut Oleg Kononenko, however, was required by Roscosmos to remain in the Russian segment of the ISS in the event of a catastrophic anomaly during Crew Dragon’s approach to the station.

Just prior to launch, NASA broke the news that its Russian ISS partners had expressed concerns about the design of Crew Dragon’s approach trajectory, mainly focusing on the fact that a loss of control or communications while moving towards the station would leave no way for the spacecraft to naturally slow down. In other words, a dead spacecraft with a forward velocity would simply continue moving forward until it impacted the ISS, a bit like a semi-truck crash in slow motion (i.e. < 0.5 m/s or 1 mph). Weighing a hefty 12 tons (~26,600 lbs) during the arrival, even an extremely low-speed impact could undoubtedly do some damage to the ISS, although an actual hull breach (and thus a need to evacuate) would be extraordinarily unlikely. Still, Oleg was unable to significantly assist during the rendezvous itself, although the cosmonaut was front and center after Crew Dragon’s successful capture.

SpaceX’s Crew Dragon is seen here in spectacular detail shortly before completing a flawless inaugural rendezvous with the International Space Station. (Oleg Kononenko/Roscosmos)

Taking advantage of the opportunity to observe, the cosmonaut was able to take a number of photos of Crew Dragon’s arrival, although the location of its docking port makes for a less than optimal perspective. Still, it’s hard to complain about any extremely high-quality photos of Crew Dragon, and Oleg’s are nothing short of spectacular. Highlighting the spacecraft’s nose section and docking port hardware, as well as limited views of its trunk section and body, this is quite possibly the first time SpaceX’s newest vehicle has been publicly shown off at this level of detail.

This privileged view includes a detailed look at Crew Dragon’s Draco maneuvering thrusters (elongated black ovals below SpaceX logo), two shrouds containing half of its SuperDraco abort thrusters (beneath the NASA meatball and flag emblem), the ‘Dragon Claw’ latch connecting the capsule and trunk (a smooth rectangle in the lower right), and even a (likely) duo of LIDAR arrays to the left and right of the docking adapter ring. Other notable appearances include the disposable trunk section’s radiators (a series of white rectangles visible on the left) and empennage, four fins meant to provide aerodynamic stability in the event of an abort. Just out of view is trunk’s sculpture-like solar array, curved to fit along the upper (relative) half of the section and fixed in place to minimize failure modes associated to deployable solar arrays like those used on Cargo Dragon.

After completing its successful space station docking debut on the morning of March 3rd, Crew Dragon is scheduled to depart the ISS and reenter Earth’s atmosphere for a soft landing in the Atlantic Ocean around 9 am PST (14:00 UTC) on March 8th. According to the SpaceX and NASA hosts of the live docking coverage, Crew Dragon’s DM-1 departure from the ISS will also be treated to a hosted webcast, potentially all the way through reentry and recovery aboard the customized SpaceX vessel GO Searcher. According to CEO Elon Musk, there is a slight but present chance of anomalous behavior during reentry due to aerodynamic instability caused by the shrouds covering Crew Dragon’s unique SuperDraco abort system, while NASA continues to have concerns (largely unexplained) about the spacecraft’s redundant parachute system.

Regardless of technical concerns, Crew Dragon’s reentry will be the final critical challenge in the way of completing its first demonstration launch (DM-1), proceeded by a flawless launch and equally flawless docking. If successful, it will explicitly pave the way for the spacecraft’s second demonstration mission (DM-2), in which two NASA astronauts will be transported to the ISS. That major milestone could occur as early as July, although slips are probable.


Check out Teslarati’s newsletters for prompt updates, on-the-ground perspectives, and unique glimpses of SpaceX’s rocket launch and recovery processes!

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Continue Reading
Comments

News

SpaceX and Elon Musk explain potential reasons for Starship loss

Published

on

Credit: SpaceX

SpaceX and its CEO Elon Musk are starting to shed some light on the potential reasoning for the loss of Starship yesterday, which was lost after a successful launch and catch of the lower-stage booster.

Starship was lost during its ascension, and debris rained down over the Caribbean less than an hour after SpaceX lost all communication with the spacecraft.

A few hours after the launch was over, SpaceX started to shed some light after looking at preliminary data that the rocket left behind.

The company said that a fire developed in the aft section of Starship:

“Following stage separation, the Starship upper stage successfully lit all six Raptor engines and performed its ascent burn to space. Prior to the burn’s completion, telemetry was lost with the vehicle after approximately eight and a half minutes of flight. Initial data indicates a fire developed in the aft section of the ship, leading to a rapid unscheduled disassembly with debris falling into the Atlantic Ocean within the predefined hazard areas.”

Additionally, Musk said that there was some sort of oxygen or fuel leak in the cavity above the ship engine firewall.

The leak was evidently large enough to build more pressure than the vent was able to handle:

Some also seemed to recognize evidence of fires throughout the flight of Starship, which is obviously an anomaly:

There will be more information regarding the loss of Starship in the coming days and weeks, but Musk already believes that a bit of fire suppression and more volume in the cavity above the ship engine firewall could fix the issue.

“Nothing so far suggests pushing next launch past next month,” he said, so Flight 8 could happen sometime in February.

Need accessories for your Tesla? Check out the Teslarati Marketplace:

Please email me with questions and comments at joey@teslarati.com. I’d love to chat! You can also reach me on Twitter @KlenderJoey, or if you have news tips, you can email us at tips@teslarati.com.

Continue Reading

News

SpaceX completes second catch of lower stage, but loses Starship

Published

on

Credit: SpaceX

SpaceX completed its seventh launch of Starship on Thursday, accomplishing a clean liftoff and catch of the first-stage booster. However, the upper stage was lost after its ascent.

The launch took place just a few minutes after 5 p.m. on the East Coast, as the first attempts at getting Starship in the air for the seventh time were delayed by weather both last week and this week.

Conditions were favorable on Thursday as SpaceX looked to follow up a successful campaign by Blue Origin, Jeff Bezos’s company, earlier today.

SpaceX went into the seventh Starship launch with plans for a catch attempt of the first-stage booster, something it attempted and completed during the fifth test launch last year. It decided to skip a catch attempt with the sixth test flight as conditions were not aligned.

For now, SpaceX is extremely selective as to when it attempts catches.

However, it was successful during this attempt, its second completed catch:

This flight differed from previous launches as SpaceX rolled out several improvements to the rocket and the processes as it featured plans to do a Starlink deployment simulation and had various adjustments to flap placement and avionics.

These plans were disrupted by the fact that SpaceX lost all communications with Starship about ten minutes into the flight, which the aerospace company confirmed was a result of losing the spacecraft sometime during its ascent.

Although the catch was successful, the loss of the actual rocket seemed to be a huge damper on the entire event. SpaceX confirmed several minutes after the loss of communications that the rocket was destroyed and was lost.

It was its first failure since the second Starship launch in November 2023. SpaceX had no answers for why the rocket was destroyed and lost.

We will keep you updated in the coming days.

Need accessories for your Tesla? Check out the Teslarati Marketplace:

Please email me with questions and comments at joey@teslarati.com. I’d love to chat! You can also reach me on Twitter @KlenderJoey, or if you have news tips, you can email us at tips@teslarati.com.

Continue Reading

News

SpaceX confirms next Starship launch target – Here’s when it will take off

Published

on

spacex starship upper stage catch
Credit: Elon Musk | X

SpaceX has confirmed a new target date for the seventh Starship test launch after weather in Texas delayed the first scheduled date for “three or four days.”

The company is now targeting the launch for Monday, January 13, at 4 p.m. CST or 5 p.m. EST. The launch date is not set in stone as any variety of delays could impact this, but SpaceX hopes to finally take off after a delay that pushed it back from January 10.

What’s new with this Starship launch

With this being the seventh test launch of Starship, there are several things that the company will change and hope to accomplish. All of these launches are done in preparation for eventually taking flight to Mars, something that will happen next year, according to CEO Elon Musk.

First, SpaceX is rolling out a next-generation ship with “significant upgrades.” Forward flaps have been made smaller and are repositioned away from the heat shield, which will “reduce their exposure to reentry heating.”

SpaceX eyes 25 annual Starship launches starting next year

There is also a 25 percent increase in propellant volume, a new fuel feedline system for the Raptor vacuum engines, and a better-than-ever propulsion avionics module that will control the valves and reading sensors.

Avionics, as a whole, underwent a redesign and now have more capability and redundancy for missions as they become more complex.

Starlink test

SpaceX is also planning to deploy 10 Starlink simulators that are similar in size and weight to the next-generation Starlink satellites:

“While in space, Starship will deploy 10 Starlink simulators, similar in size and weight to next-generation Starlink satellites as the first exercise of a satellite deploy mission. The Starlink simulators will be on the same suborbital trajectory as Starship, with splashdown targeted in the Indian Ocean. A relight of a single Raptor engine while in space is also planned.”

Ship return and catch

There will be several experiments that have to do with returning Starship and various catch scenarios and sequences. One of which will see “a significant number of tiles be removed to stress-test vulnerable areas across the vehicle.”

The ship’s reentry profile was also intentionally designed to test the structural limits of the flaps while at the point of maximum dynamic pressure during reentry.

Currently, SpaceX did not detail whether it would attempt another catch during this test launch. These are usually game-time decisions.

Need accessories for your Tesla? Check out the Teslarati Marketplace:

Please email me with questions and comments at joey@teslarati.com. I’d love to chat! You can also reach me on Twitter @KlenderJoey, or if you have news tips, you can email us at tips@teslarati.com.

Continue Reading