Connect with us

SpaceX

SpaceX’s Crew Dragon launch moves to March, risking Falcon Heavy delays

SpaceX completed a static fire of the first Falcon 9 rated for human flight on January 24th. DM-1 is now NET March 2019, clashing with Falcon Heavy's schedule. (SpaceX)

Published

on

The planning date for the launch debut of SpaceX’s Crew Dragon spacecraft has been pushed to no earlier than (NET) March 2019 per sources familiar with the matter, potentially creating a direct schedule conflict with the company’s planned operational debut of Falcon Heavy, also NET March 2019.

At the same time as delays to the Commercial Crew Program continue to increase the odds that NASA will lose assured access to the International Space Station (ISS) in 2020, both of SpaceX’s critical missions are entirely dependent upon the support of its Kennedy Space Center-located Launch Complex 39A (Pad 39A), creating a logistical puzzle that will likely delay Falcon Heavy’s second launch until Crew Dragon is safely in orbit.

As of the first week of December 2018, SpaceX was reportedly planning towards a mid-January 2019 launch debut for Crew Dragon. By the end of December, DM-1 was no earlier than the end of January. By the end of January, DM-1 had slipped to from late-February to NET March 2019. Put in slightly different terms, SpaceX’s Crew Dragon launch debut has been more or less indefinitely postponed for the last two months, with planning dates being pushed back at roughly the same pace as the passage of time (i.e. a day’s delay every day).

Admittedly, DM’s apparently indefinite postponement may well be – and probably is – more of an artifact than a sign of any monolithic cause. While the US government’s longest-ever shutdown (35 days) undoubtedly delayed a major proportion of mission-critical work having to do with extensive NASA reviews of SpaceX and Crew Dragon’s launch readiness (known as Readiness Reviews), much of the 60+ day DM-1 delay can probably be attributed to the complexity of the tasks at hand. Being as it is the first time SpaceX has ever attempted a launch directly related to human spaceflight, as well as the first time NASA has been back at the helm (more or less) of US astronaut launch endeavors in more than 7.5 years, significant delays should come as no surprise regardless of how disappointing they may be.

The most consequential aspect of DM-1’s two-month (at least) delay will likely be the myriad ways it feeds into delays of SpaceX’s in-flight abort (IFA) test and first crewed launch (DM-2), and thus’s NASA’s ability to once again independently launch US astronauts. Given that SpaceX’s DM-2 is expected to occur around six months after DM-1 and that the final certification of Crew Dragon for official astronaut launches will likely take another 2-3 months, these delays – barring heroics or program modifications – are pushing NASA dangerously close to the edge of losing assured US access to the International Space Station (ISS).

According to a July 2018 report, the Government Accountability Office (GAO) analyzed the Commercial Crew Program and NASA’s human spaceflight program more generally and concluded that NASA would lose assured access to the ISS in November 2019 if Boeing and SpaceX continued to suffer delays and were unable to reach certification status by then. This comes as a result of NASA’s reliance on Russian Soyuz launches for access both to and from the ISS, launch and return service contracts which have no replacements (aside from SpaceX and Boeing). While GAO noted that NASA could likely delay that loss of assured access until January 2020, even that might be pushing it if SpaceX’s DM-1 delay continues much further.

“[While NASA is working on potential solutions, it] has not yet developed a contingency plan to address the potential gaps that [future delays in Boeing and SpaceX schedules] could have on U.S. access to the ISS after 2019.” – GAO, July 2018

Prior to DM-1’s delay from NET January to NET March 2019, SpaceX was targeting an In-Flight Abort test roughly three months after DM-1 (it will reuse DM-1’s Crew Dragon capsule), DM-2 six months after DM-1 (NET June 2019), and NASA certification and the first operational astronaut launch (PCM-1) as few as two months after DM-2 (August 2019). It’s reasonable to assume that delays to DM-1 will impact subsequent Crew Dragon launches roughly 1:1, as DM-2 and its many associated reviews hinge directly on DM-1, while the same relationship also exists between PCM-1 and DM-2. As a result, Crew Dragon’s two-month delay probably means that SpaceX’s NASA certification will occur no earlier than October 2019, giving NASA no more than 90 days of buffer before the US presence on the ISS drops from around 50% (3 astronauts) to 0%.

Crew Dragon and Falcon Heavy walk into a bar…

The unexpected delays to Crew Dragon’s DM-1 launch debut are likely placing SpaceX in an awkward situation with respect to the operational launch debut of Falcon Heavy, meant to place the terminally delayed Arabsat 6A satellite into orbit no earlier than March 7th, 2019 (at the absolute earliest). DM-1 is also targeting a launch sometime in March, posing a significant problem: both Falcon Heavy and Crew Dragon can only launch from Pad 39A, while the on-site hangar simply doesn’t have the space to support schedule-critical Falcon Heavy prelaunch work (mainly booster integration and a static fire test) and no less critical Crew Dragon launch preparations simultaneously.

 

Much like SpaceX’s inaugural Falcon Heavy rocket spent a month and a half fully integrated and more than two weeks in a static-fire limbo (albeit due to one-of-a-kind circumstances) before its launch debut, SpaceX’s second Falcon Heavy rocket – comprised of three new Block 5 boosters and Heavy-specific hardware upgrades – is likely to take a good deal more time than a normal Falcon 9 for prelaunch processing. Almost all of that Heavy-specific testing depends on the rocket being integrated (i.e. all three boosters attached) for preflight fit and systems checks and a wet dress rehearsal (WDR) and/or static fire ignition test.

It’s entirely possible that SpaceX integration technicians are able to complete the process of swapping out Crew Dragon and Falcon 9, modifying the transport/erector (T/E), completing Falcon Heavy booster integration, and installing Falcon Heavy on the T/E quickly enough to allow for simultaneous DM-1 and Arabsat 6A processing. It’s also possible that an extremely elegant but risky alternative strategy could solve the logistical puzzle – as an example, SpaceX could roll Crew Dragon and Falcon 9 out to Pad 39A a week or more before launch to give Falcon Heavy enough space for full integration, whereby Falcon 9’s necessarily successful launch would clear the T/E and allow it to be rolled back into 39A’s hangar for Falcon Heavy installation.

The most likely (and least risky) end result, however, is an indefinite delay for Falcon Heavy Flight 2, pending the successful launch of Crew Dragon. This is very much an instance where “wait and see” is the only route to solid answers, so wait and see we shall.


Check out Teslarati’s newsletters for prompt updates, on-the-ground perspectives, and unique glimpses of SpaceX’s rocket launch and recovery processes!

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Continue Reading
Comments

News

SpaceX and Elon Musk explain potential reasons for Starship loss

Published

on

Credit: SpaceX

SpaceX and its CEO Elon Musk are starting to shed some light on the potential reasoning for the loss of Starship yesterday, which was lost after a successful launch and catch of the lower-stage booster.

Starship was lost during its ascension, and debris rained down over the Caribbean less than an hour after SpaceX lost all communication with the spacecraft.

A few hours after the launch was over, SpaceX started to shed some light after looking at preliminary data that the rocket left behind.

The company said that a fire developed in the aft section of Starship:

“Following stage separation, the Starship upper stage successfully lit all six Raptor engines and performed its ascent burn to space. Prior to the burn’s completion, telemetry was lost with the vehicle after approximately eight and a half minutes of flight. Initial data indicates a fire developed in the aft section of the ship, leading to a rapid unscheduled disassembly with debris falling into the Atlantic Ocean within the predefined hazard areas.”

Additionally, Musk said that there was some sort of oxygen or fuel leak in the cavity above the ship engine firewall.

The leak was evidently large enough to build more pressure than the vent was able to handle:

Some also seemed to recognize evidence of fires throughout the flight of Starship, which is obviously an anomaly:

There will be more information regarding the loss of Starship in the coming days and weeks, but Musk already believes that a bit of fire suppression and more volume in the cavity above the ship engine firewall could fix the issue.

“Nothing so far suggests pushing next launch past next month,” he said, so Flight 8 could happen sometime in February.

Need accessories for your Tesla? Check out the Teslarati Marketplace:

Please email me with questions and comments at joey@teslarati.com. I’d love to chat! You can also reach me on Twitter @KlenderJoey, or if you have news tips, you can email us at tips@teslarati.com.

Continue Reading

News

SpaceX completes second catch of lower stage, but loses Starship

Published

on

Credit: SpaceX

SpaceX completed its seventh launch of Starship on Thursday, accomplishing a clean liftoff and catch of the first-stage booster. However, the upper stage was lost after its ascent.

The launch took place just a few minutes after 5 p.m. on the East Coast, as the first attempts at getting Starship in the air for the seventh time were delayed by weather both last week and this week.

Conditions were favorable on Thursday as SpaceX looked to follow up a successful campaign by Blue Origin, Jeff Bezos’s company, earlier today.

SpaceX went into the seventh Starship launch with plans for a catch attempt of the first-stage booster, something it attempted and completed during the fifth test launch last year. It decided to skip a catch attempt with the sixth test flight as conditions were not aligned.

For now, SpaceX is extremely selective as to when it attempts catches.

However, it was successful during this attempt, its second completed catch:

This flight differed from previous launches as SpaceX rolled out several improvements to the rocket and the processes as it featured plans to do a Starlink deployment simulation and had various adjustments to flap placement and avionics.

These plans were disrupted by the fact that SpaceX lost all communications with Starship about ten minutes into the flight, which the aerospace company confirmed was a result of losing the spacecraft sometime during its ascent.

Although the catch was successful, the loss of the actual rocket seemed to be a huge damper on the entire event. SpaceX confirmed several minutes after the loss of communications that the rocket was destroyed and was lost.

It was its first failure since the second Starship launch in November 2023. SpaceX had no answers for why the rocket was destroyed and lost.

We will keep you updated in the coming days.

Need accessories for your Tesla? Check out the Teslarati Marketplace:

Please email me with questions and comments at joey@teslarati.com. I’d love to chat! You can also reach me on Twitter @KlenderJoey, or if you have news tips, you can email us at tips@teslarati.com.

Continue Reading

News

SpaceX confirms next Starship launch target – Here’s when it will take off

Published

on

spacex starship upper stage catch
Credit: Elon Musk | X

SpaceX has confirmed a new target date for the seventh Starship test launch after weather in Texas delayed the first scheduled date for “three or four days.”

The company is now targeting the launch for Monday, January 13, at 4 p.m. CST or 5 p.m. EST. The launch date is not set in stone as any variety of delays could impact this, but SpaceX hopes to finally take off after a delay that pushed it back from January 10.

What’s new with this Starship launch

With this being the seventh test launch of Starship, there are several things that the company will change and hope to accomplish. All of these launches are done in preparation for eventually taking flight to Mars, something that will happen next year, according to CEO Elon Musk.

First, SpaceX is rolling out a next-generation ship with “significant upgrades.” Forward flaps have been made smaller and are repositioned away from the heat shield, which will “reduce their exposure to reentry heating.”

SpaceX eyes 25 annual Starship launches starting next year

There is also a 25 percent increase in propellant volume, a new fuel feedline system for the Raptor vacuum engines, and a better-than-ever propulsion avionics module that will control the valves and reading sensors.

Avionics, as a whole, underwent a redesign and now have more capability and redundancy for missions as they become more complex.

Starlink test

SpaceX is also planning to deploy 10 Starlink simulators that are similar in size and weight to the next-generation Starlink satellites:

“While in space, Starship will deploy 10 Starlink simulators, similar in size and weight to next-generation Starlink satellites as the first exercise of a satellite deploy mission. The Starlink simulators will be on the same suborbital trajectory as Starship, with splashdown targeted in the Indian Ocean. A relight of a single Raptor engine while in space is also planned.”

Ship return and catch

There will be several experiments that have to do with returning Starship and various catch scenarios and sequences. One of which will see “a significant number of tiles be removed to stress-test vulnerable areas across the vehicle.”

The ship’s reentry profile was also intentionally designed to test the structural limits of the flaps while at the point of maximum dynamic pressure during reentry.

Currently, SpaceX did not detail whether it would attempt another catch during this test launch. These are usually game-time decisions.

Need accessories for your Tesla? Check out the Teslarati Marketplace:

Please email me with questions and comments at joey@teslarati.com. I’d love to chat! You can also reach me on Twitter @KlenderJoey, or if you have news tips, you can email us at tips@teslarati.com.

Continue Reading