

News
New Sun mission to launch in attempt to snap 1st-ever photos of star’s poles
A new spacecraft is set to launch on a journey to the Sun. It’s goal: to snap the first pictures of the Sun’s north and south poles.
Dubbed Solar Orbiter, the spacecraft is a collaboration between the European Space Agency (ESA) and NASA. The 3,970-lb. (1,320 kg) spacecraft will launch atop United Launch Alliance (ULA) Atlas V rocket on Feb. 7, 2020, during a two-hour launch window that opens at 11:15 p.m. EST (0415 GMT Feb. 8).
It’s launching at night because the spacecraft is on a path to Venus where it will use the planet’s gravity to slingshot itself out of the ecliptic plane — the area of space where all planets orbit.
From that vantage point, Solar Orbiter’s on-board cameras will capture the first-ever view of the Sun’s poles.

“Up until Solar Orbiter, all solar imaging instruments have been within the ecliptic plane or very close to it,” Russell Howard, space scientist at the Naval Research Lab in Washington, D.C. and principal investigator for one of Solar Orbiter’s ten instruments said in a mission update. “Now, we’ll be able to look down on the Sun from above.”
“It will be terra incognita,” added Daniel Müller, ESA project scientist for the mission at the European Space Research and Technology Centre in the Netherlands. “This is really exploratory science.”
The spacecraft is taking a suite of specialized instruments with it on its journey to the sun. It will also work in tandem with another solar-observing spacecraft—NASA’s Parker Solar Probe.

Launched in 2018, Parker has now completed its first few close passes of the sun. The spacecraft is already making discoveries, showing that despite appearance, the sun is anything but quiet.
It plays a central role in shaping space around us. As a magnetically active star, the sun unleashes powerful bursts of light and a slew of charged particles (racing at near light-speed) across the solar system. This violent activity has been happening throughout the sun’s 5.5 billion-year lifespan and affects our planet daily.
The sun has a massive magnetic field, which stretches far beyond Pluto, and creates the boundary between our solar system and interstellar space. It also creates a path for charged particles to whiz across the solar system.
The barrage of energetic particles, known as the solar wind, can damage spacecraft, satellites, and is harmful to our astronauts. It can disrupt navigation signals, and during extreme flares, can even trigger power outages.
But we can prepare for these things by monitoring the sun’s activity and magnetic field. However, our view from Earth is limited and leaves us with incomplete data. Scientists are hoping that by observing the sun’s polar regions, Solar Orbiter will be able to fill in the gaps in our knowledge.
“The poles are particularly important for us to be able to model more accurately,” Holly Gilbert, NASA project scientist for the mission at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “For forecasting space weather events, we need a pretty accurate model of the global magnetic field of the Sun.”

Solar Orbiter will take seven years to reach a viewpoint 24 degrees above the Sun’s equator, increasing to 33 degrees if the mission is extended an additional three years. That will provide the best views ever of the poles.
Additionally, the poles may be able to shed some light on the driving force behind sun spots — dark spots on the sun’s surface that mark strong magnetic fields. In 1843, German astronomer, Samuel Heinrich Schwabe, discovered that the spots increase and decrease during the solar cycle in a repeating pattern.
There are an abundance of sunspots during solar maximum (when the sun is active and turbulent) and fewer during solar minimum (when the sun is calmer). But scientists don’t understand why the cycle lasts 11 years, or why some solar maximums are stronger than others.
They hope to find the answer by observing the changing magnetic fields at the poles.

There’s only been one other spacecraft to fly over the sun’s polar regions: another joint ESA/NASA venture called Ulysses. It made three passes around the sun before being decommissioned in 2009. However, unlike Solar Orbiter, Ulysses did not have an imager on board to take pictures of the poles.
That spacecraft also did not get nearly as close as Solar Orbiter will. That’s because it lacked the technology required to keep it cool. Scientists have been waiting more than 60 years for missions like Parker Solar Probe and Solar Orbiter to come online.

It’s takes a lot of technology development to be able to design and build a spacecraft that will survive a close encounter with the sun.
Solar Orbiter is outfitted with a custom-designed titanium heat shield, topped with a calcium phosphate coating that withstands temperatures over 900 degrees Fahrenheit (482 degrees Celsius). That’s thirteen times the amount of heat that spacecraft in Earth-orbit are subjected to.
News
Armored Tesla Cybertruck “War Machine” debuts at Defense Expo 2025
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Temporibus autem quibusdam et aut officiis debitis aut rerum necessitatibus saepe eveniet ut et voluptates repudiandae sint et molestiae non recusandae. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
“Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat”
Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit aut fugit, sed quia consequuntur magni dolores eos qui ratione voluptatem sequi nesciunt.
Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus.
Nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium doloremque laudantium, totam rem aperiam, eaque ipsa quae ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt explicabo.
Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci velit, sed quia non numquam eius modi tempora incidunt ut labore et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, nisi ut aliquid ex ea commodi consequatur.
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga.
Quis autem vel eum iure reprehenderit qui in ea voluptate velit esse quam nihil molestiae consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla pariatur.
News
Tesla Megapacks chosen for 548 MWh energy storage project in Japan
Tesla plans to supply over 100 Megapack units to support a large stationary storage project in Japan, making it one of the country’s largest energy storage facilities.

Tesla’s Megapack grid-scale batteries have been selected to back an energy storage project in Japan, coming as the latest of the company’s continued deployment of the hardware.
As detailed in a report from Nikkei this week, Tesla plans to supply 142 Megapack units to support a 548 MWh storage project in Japan, set to become one of the country’s largest energy storage facilities. The project is being overseen by financial firm Orix, and it will be located at a facility Maibara in central Japan’s Shiga prefecture, and it aims to come online in early 2027.
The deal is just the latest of several Megapack deployments over the past few years, as the company continues to ramp production of the units. Tesla currently produces the Megapack at a facility in Lathrop, California, though the company also recently completed construction on its second so-called “Megafactory” in Shanghai China and is expected to begin production in the coming weeks.
READ MORE ON TESLA MEGAPACKS: Tesla Megapacks help power battery supplier Panasonic’s Kyoto test site
Tesla’s production of the Megapack has been ramping up at the Lathrop facility since initially opening in 2022, and both this site and the Shanghai Megafactory are aiming to eventually reach a volume production of 10,000 Megapack units per year. The company surpassed its 10,000th Megapack unit produced at Lathrop in November.
During Tesla’s Q4 earnings call last week, CEO Elon Musk also said that the company is looking to construct a third Megafactory, though he did not disclose where.
Last year, Tesla Energy also had record deployments of its Megapack and Powerwall home batteries with a total of 31.4 GWh of energy products deployed for a 114-percent increase from 2023.
Other recently deployed or announced Megapack projects include a massive 600 MW/1,600 MWh facility in Melbourne, a 75 MW/300 MWh energy storage site in Belgium, and a 228 MW/912 MWh storage project in Chile, along with many others still.
What are your thoughts? Let me know at zach@teslarati.com, find me on X at @zacharyvisconti, or send us tips at tips@teslarati.com.
Tesla highlights the Megapack site replacing Hawaii’s last coal plant
Need accessories for your Tesla? Check out the Teslarati Marketplace:
News
Elon Musk responds to Ontario canceling $100M Starlink deal amid tariff drama
Ontario Premier Doug Ford said, opens new tab on February 3 that he was “ripping up” his province’s CA$100 million agreement with Starlink in response to the U.S. imposing tariffs on Canadian goods.

Elon Musk company SpaceX is set to lose a $100 million deal with the Canadian province of Ontario following a response to the Trump administration’s decision to apply 25 percent tariffs to the country.
Starlink, a satellite-based internet service launched by the Musk entity SpaceX, will lose a $100 million deal it had with Ontario, Premier Doug Ford announced today.
Starting today and until U.S. tariffs are removed, Ontario is banning American companies from provincial contracts.
Every year, the Ontario government and its agencies spend $30 billion on procurement, alongside our $200 billion plan to build Ontario. U.S.-based businesses will…
— Doug Ford (@fordnation) February 3, 2025
Ford said on X today that Ontario is banning American companies from provincial contracts:
“We’ll be ripping up the province’s contract with Starlink. Ontario won’t do business with people hellbent on destroying our economy. Canada didn’t start this fight with the U.S., but you better believe we’re ready to win it.”
It is a blow to the citizens of the province more than anything, as the Starlink internet constellation has provided people in rural areas across the globe stable and reliable access for several years.
Musk responded in simple terms, stating, “Oh well.”
Oh well https://t.co/1jpMu55T6s
— Elon Musk (@elonmusk) February 3, 2025
It seems Musk is less than enthused about the fact that Starlink is being eliminated from the province, but it does not seem like all that big of a blow either.
As previously mentioned, this impacts citizens more than Starlink itself, which has established itself as a main player in reliable internet access. Starlink has signed several contracts with various airlines and maritime companies.
It is also expanding to new territories across the globe on an almost daily basis.
With Mexico already working to avoid the tariff situation with the United States, it will be interesting to see if Canada does the same.
The two have shared a pleasant relationship, but President Trump is putting his foot down in terms of what comes across the border, which could impact Americans in the short term.