

News
NASA’s first Artemis Moon mission a flawless success after Orion splashdown
NASA has successfully recovered an uncrewed version of its Orion crew capsule, marking the flawless completion of the spacecraft’s first Moon mission and the Space Launch System (SLS) rocket’s first launch.
Six years behind schedule, roughly $20 billion over budget, and costing taxpayers almost $50 billion through its first full flight test, anything less than near-perfection would have been a moderate scandal. But to the credit of NASA and its contractors, who have all worn excuses in the spirit of ‘perfection takes time’ threadbare, the international team behind Artemis I appears to have actually delivered on those implied promises. While some small bugs were unsurprisingly discovered over the 25-day mission, a collection of excellent post-launch NASASpaceflight.com interviews confirm that each major part of the SLS rocket performed about as flawlessly as their respective teams could have hoped for.
Originally intended to launch in late 2016, the first SLS rocket lifted off with the second space-bound Orion spacecraft on November 16th, 2022. Propelled by its European Service Module (ESM), Orion passed the Moon around November 21st. It then entered an unusual distant retrograde orbit (DRO) around the Moon on November 26th, reaching a record distance of 432,200 kilometers (268,563 mi) from Earth in the process. After less than a week in lunar orbit, Orion departed DRO on December 1st and began a long journey back to Earth.
The update that's rolling out to the fleet makes full use of the front and rear steering travel to minimize turning circle. In this case a reduction of 1.6 feet just over the air
— Wes (@wmorrill3) April 16, 2024
On December 11th, about four weeks after liftoff, Orion separated from its disposable service module (~$400 million) and slammed into Earth’s atmosphere traveling around 11 kilometers per second (~25,000 mph). In another credit to NASA and capsule contractor Lockheed Martin, Orion’s reentry, descent, and splashdown all went perfectly. After its ablative heat shield did most of the work slowing it down, the spacecraft deployed parachutes and splashed down in the Pacific Ocean some 240 kilometers (~150 mi) off the coast of Mexico’s Baja Peninsula, southwest of California.
Taking full advantage of the fact that Orion and SLS are a government program and continuing in the footsteps of the Apollo Program, the US Navy was tasked with Orion spacecraft recovery. To that end, it deployed USS Portland – a 208-meter-long amphibious transport ship crewed by hundreds of sailors – to recover Artemis I’s Orion, which was completed without issue using the ship’s Navy helicopters, fast boats, and floodable well-deck.



Following capsule recovery, which wrapped up almost seven hours after splashdown, it’s safe to say that NASA’s Artemis I mission was a spectacular, near-perfect success. Only a few aspects detract from the extraordinary performance of the spacecraft. Most significantly, despite being half a decade behind schedule and billions of dollars over budget, Artemis I’s Orion capsule and service module did not fly with or test a functioning docking port or Environmental Control and Life Support System (ECLSS). Those systems will not be tested in space until Artemis II, Orion’s first astronaut launch, inherently reducing the risk-reduction and predictive value of the flight test.
Additionally, Artemis I launched Orion to a distant retrograde lunar orbit. No future NASA missions are scheduled to use DRO. For the time being, Artemis II will be a free-return lunar flyby mission, meaning that Orion will never enter orbit around the Moon – the safest possible lunar trajectory for its crewed debut. For Artemis III and all future Orion missions, the spacecraft will enter a different near-rectilinear halo orbit (NRHO) around the Moon – similar to DRO in spirit but entirely different in practice. That again slightly reduces the value of Orion’s spectacular performance during Artemis I.
Waiting for Artemis II
Finally, due to a series of decisions and the shockingly slow expected performance NASA and its contractors, the next Orion and SLS launch is unlikely to occur before 2025. Recently discussed by the US Government Accountability Office (GAO) in a September 2022 report [PDF], the cause is strange. GAO says that “NASA estimates it will require ~27 months between Artemis I and Artemis II due to Orion integration activities and reuse of avionics from the Artemis I crew capsule on…Artemis II.” In other words, even though Artemis I was near-flawless, Artemis II will be delayed partly because of an attempt to reuse a tiny portion of its successfully recovered capsule.

Ars Technica’s Eric Berger recently provided another tidbit of painful context with the discovery that the decision to reuse the first deep space Orion’s avionics boxes was made eight years ago to close a “$100 million budget hole.” Inexplicably, NASA and Lockheed Martin believe it will take more than “two years to re-certify the flight hardware.” Berger explains that years ago, NASA only intended to launch SLS’s first Block 1 variant once, and expected that it would take at least three years to retrofit the rocket’s sole launch tower for the rocket’s Block 1B upgrade and second launch overall.
Years later, parochial pork-hungry members of Congress leaped on an opportunity to force NASA to build a second launch tower to help avoid that three-year gap between launches. Ironically, that second tower, ML-2, is now expected to cost anywhere from 2.5 to 4 times more than its original $383 million price tag and is years behind schedule. Meanwhile, SLS Block 1B is also years behind schedule, which led NASA to decide to launch SLS Block 1 three times instead of just once.


Ultimately, that means that the bizarrely slow recertification of eight Artemis I Orion avionics boxes – not the SLS rocket, ground systems, or any rework required after their launch debut – is now “the primary critical path for…Artemis II.” As a result, Berger estimates that delays caused by the decisions NASA made to save $100 million almost a decade ago will likely end up costing taxpayers $1 billion.
Artemis II is unlikely to launch less than 27 months after Artemis I, pegging the launch no earlier than February 2025. That gap of more than two years is just 20% shorter than the 33-month gap a NASA advisor once said could raise safety concerns because of the loss of experience that would result, which factored into the decision to build a second launch tower. Ultimately, NASA appears to have secured another very large chunk of time to ensure that Artemis II – like Artemis I – goes as perfectly as possible when the time finally comes.
News
Armored Tesla Cybertruck “War Machine” debuts at Defense Expo 2025
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Temporibus autem quibusdam et aut officiis debitis aut rerum necessitatibus saepe eveniet ut et voluptates repudiandae sint et molestiae non recusandae. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
“Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat”
Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit aut fugit, sed quia consequuntur magni dolores eos qui ratione voluptatem sequi nesciunt.
Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus.
Nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium doloremque laudantium, totam rem aperiam, eaque ipsa quae ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt explicabo.
Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci velit, sed quia non numquam eius modi tempora incidunt ut labore et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, nisi ut aliquid ex ea commodi consequatur.
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga.
Quis autem vel eum iure reprehenderit qui in ea voluptate velit esse quam nihil molestiae consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla pariatur.
News
Tesla Megapacks chosen for 548 MWh energy storage project in Japan
Tesla plans to supply over 100 Megapack units to support a large stationary storage project in Japan, making it one of the country’s largest energy storage facilities.

Tesla’s Megapack grid-scale batteries have been selected to back an energy storage project in Japan, coming as the latest of the company’s continued deployment of the hardware.
As detailed in a report from Nikkei this week, Tesla plans to supply 142 Megapack units to support a 548 MWh storage project in Japan, set to become one of the country’s largest energy storage facilities. The project is being overseen by financial firm Orix, and it will be located at a facility Maibara in central Japan’s Shiga prefecture, and it aims to come online in early 2027.
The deal is just the latest of several Megapack deployments over the past few years, as the company continues to ramp production of the units. Tesla currently produces the Megapack at a facility in Lathrop, California, though the company also recently completed construction on its second so-called “Megafactory” in Shanghai China and is expected to begin production in the coming weeks.
READ MORE ON TESLA MEGAPACKS: Tesla Megapacks help power battery supplier Panasonic’s Kyoto test site
Tesla’s production of the Megapack has been ramping up at the Lathrop facility since initially opening in 2022, and both this site and the Shanghai Megafactory are aiming to eventually reach a volume production of 10,000 Megapack units per year. The company surpassed its 10,000th Megapack unit produced at Lathrop in November.
During Tesla’s Q4 earnings call last week, CEO Elon Musk also said that the company is looking to construct a third Megafactory, though he did not disclose where.
Last year, Tesla Energy also had record deployments of its Megapack and Powerwall home batteries with a total of 31.4 GWh of energy products deployed for a 114-percent increase from 2023.
Other recently deployed or announced Megapack projects include a massive 600 MW/1,600 MWh facility in Melbourne, a 75 MW/300 MWh energy storage site in Belgium, and a 228 MW/912 MWh storage project in Chile, along with many others still.
What are your thoughts? Let me know at zach@teslarati.com, find me on X at @zacharyvisconti, or send us tips at tips@teslarati.com.
Tesla highlights the Megapack site replacing Hawaii’s last coal plant
Need accessories for your Tesla? Check out the Teslarati Marketplace:
News
Elon Musk responds to Ontario canceling $100M Starlink deal amid tariff drama
Ontario Premier Doug Ford said, opens new tab on February 3 that he was “ripping up” his province’s CA$100 million agreement with Starlink in response to the U.S. imposing tariffs on Canadian goods.

Elon Musk company SpaceX is set to lose a $100 million deal with the Canadian province of Ontario following a response to the Trump administration’s decision to apply 25 percent tariffs to the country.
Starlink, a satellite-based internet service launched by the Musk entity SpaceX, will lose a $100 million deal it had with Ontario, Premier Doug Ford announced today.
Starting today and until U.S. tariffs are removed, Ontario is banning American companies from provincial contracts.
Every year, the Ontario government and its agencies spend $30 billion on procurement, alongside our $200 billion plan to build Ontario. U.S.-based businesses will…
— Doug Ford (@fordnation) February 3, 2025
Ford said on X today that Ontario is banning American companies from provincial contracts:
“We’ll be ripping up the province’s contract with Starlink. Ontario won’t do business with people hellbent on destroying our economy. Canada didn’t start this fight with the U.S., but you better believe we’re ready to win it.”
It is a blow to the citizens of the province more than anything, as the Starlink internet constellation has provided people in rural areas across the globe stable and reliable access for several years.
Musk responded in simple terms, stating, “Oh well.”
Oh well https://t.co/1jpMu55T6s
— Elon Musk (@elonmusk) February 3, 2025
It seems Musk is less than enthused about the fact that Starlink is being eliminated from the province, but it does not seem like all that big of a blow either.
As previously mentioned, this impacts citizens more than Starlink itself, which has established itself as a main player in reliable internet access. Starlink has signed several contracts with various airlines and maritime companies.
It is also expanding to new territories across the globe on an almost daily basis.
With Mexico already working to avoid the tariff situation with the United States, it will be interesting to see if Canada does the same.
The two have shared a pleasant relationship, but President Trump is putting his foot down in terms of what comes across the border, which could impact Americans in the short term.